- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Apon, Amy (3)
-
Duffy, Edward (3)
-
Kennedy, Ken (3)
-
Luckow, Andre (3)
-
Aggarwal, Siddhant (2)
-
Nguyen, Dung (2)
-
Srivastava, Aishwarya (2)
-
Ziolkowski, Marcin (2)
-
Posey, Brandon (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Srivastava, Aishwarya; Nguyen, Dung; Aggarwal, Siddhant; Luckow, Andre; Duffy, Edward; Kennedy, Ken; Ziolkowski, Marcin; Apon, Amy (, 2018 IEEE international conference on Big Data (Big Data))
-
Srivastava, Aishwarya; Aggarwal, Siddhant; Apon, Amy; Duffy, Edward; Kennedy, Ken; Luckow, Andre; Posey, Brandon; Ziolkowski, Marcin (, Software: Practice and Experience)Summary We investigate the challenges of building an end‐to‐end cloud pipeline for real‐time intelligent visual inspection system for use in automotive manufacturing. Current methods of visual detection in automotive assembly are highly labor intensive, and thus prone to errors. An automated process is sought that can operate within the real‐time constraints of the assembly line and can reduce errors. Components of the cloud pipeline include capture of a large set of high‐definition images from a camera setup at the assembly location, transfer and storage of the images as needed, execution of object detection, and notification to a human operator when a fault is detected. The end‐to‐end execution must complete within a fixed time frame before the next car arrives in the assembly line. In this article, we report the design, development, and experimental evaluation of the tradeoffs of performance, accuracy, and scalability for a cloud system.more » « less
An official website of the United States government
